Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

نویسندگان

  • Cameron S. Gordon
  • Nandhakishore Rajagopalan
  • Eddy P. Risseeuw
  • Marci Surpin
  • Fraser J. Ball
  • Carla J. Barber
  • Leann M. Buhrow
  • Shawn M. Clark
  • Jonathan E. Page
  • Chris D. Todd
  • Suzanne R. Abrams
  • Michele C. Loewen
چکیده

Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA's modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.

As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The struct...

متن کامل

Controlling fusarium head blight of wheat (Triticum aestivum L.) with genetics

Fusarium head blight, one of the most destructive diseases of wheat (Triticum aestivum L.), results in significant economic losses from reduced grain yield and quality. In recent decades, the disease has been frequently recorded, especially under warm and wet climatic conditions. Genetic resistance has engaged plant breeders because the use of resistant cultivars is the most economical, effecti...

متن کامل

Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat

Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...

متن کامل

Microsatellite DNA polymorphism divergence in Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight.

Genetic differences between 20 Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight (FHB) and 4 wheat lines highly susceptible to FHB were evaluated by means of microsatellite markers, in order to select suitable parents for gene mapping studies. Thirty-nine out of 40 microsatellite markers (97.5%) were polymorphic among the 24 wheat genotypes. A total of 276 ...

متن کامل

Mapping a QTL conferring resistance to Fusarium head blight on chromosome 1B in winter wheat (Triticum aestivum L.)

Fusarium head blight (FHB) is one of the most devastating diseases of wheat (Triticum aestivum L.), and the development of cultivars with FHB resistance is the most effective way to control the disease. Yumechikara is a Japanese hard red winter wheat cultivar that shows moderate resistance to FHB with superior bread-making quality. To identify quantitative trait loci (QTLs) for FHB resistance i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016